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Abstract - Safe and dynamically feasible trajectory
planning is a core challenge in autonomous systems,
especially in  cluttered or  unpredictable
environments. Traditional Model Predictive
Control (MPC) frameworks are popular due to
their ability to optimize trajectories over a
prediction horizon while respecting constraints.
However, these methods rely on manually
engineered cost functions that require extensive
tuning and often fail to generalize to unseen
scenarios. They also lack mechanisms to
incorporate learned priors on what constitutes a

“safe” trajectory, limiting adaptability and
robustness.
To address these limitations, we propose

GRAFT:Gradient-based Real-time Autoencoder-
Fused Trajectory Optimizer for safe motion
planning—a novel framework that integrates a self-
supervised autoencoder directly into the MPC
optimization process. The autoencoder, trained in
PyTorch on a dataset of expert-like trajectories
without human-labeled data, learns a latent
representation of safe motion patterns. Its
reconstruction loss acts as a differentiable safety
prior within the MPC loss function, guiding the
optimizer to generate trajectories that remain
within this learned safe manifold.

GRAFT is implemented as a fully monolithic
Python application with a Streamlit interface,
enabling real-time interaction where users can
define start and goal positions, place obstacles, and
tune optimization parameters such as learning rate
and iteration count. The optimizer uses gradient-
based methods on a composite loss combining goal-
reaching, smoothness, obstacle avoidance, and
autoencoder-based safety terms to produce smooth,
feasible trajectories.

We evaluate GRAFT on synthetic environments and
a custom trajectory dataset. Results demonstrate
improved convergence, higher trajectory feasibility,
reduced false motions, and less manual parameter
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tuning compared to baseline methods. Real-time
visualizations allow wusers to monitor optimization
progress, reconstruction quality, and final path safety,
making SOMTP both an algorithmic innovation and a
practical tool for researchers and developers.

This work highlights the potential of embedding learned
safety priors within planning frameworks, paving the way
toward more intelligent and adaptable autonomous
navigation systems.

Keywords - Trajectory planning, Model Predictive Control
(MPC), self-supervised learning, autoencoder, safe
navigation, motion optimization, obstacle avoidance,
autonomous systems.

[. INTRODUCTION

Autonomous systems require safe and efficient trajectory
planning to operate effectively in dynamic and constrained
environments. Model Predictive Control (MPC) is a widely
adopted approach for such tasks, as it can plan future actions
while respecting system constraints over a prediction horizon.
However, traditional MPC methods often depend on hand-
crafted cost functions that require extensive tuning and may
struggle to adapt to complex, real-world scenarios with
unpredictable obstacles and environments.

To overcome these challenges, we propose GRAFT—
Gradient-based  real-time  autoencoder-fused  trajectory
optimizer for safe motion planning. GRAFT mtegrates a self-
supervised autoencoder that learns a latent representation of
feasible and safe trajectories without requiring manual
annotations. This learned representation 1s incorporated into
the MPC optimization as a differentiable safety prior through a
custom loss function, enabling the planner to generate
dynamically feasible and collision-free trajectories more
robustly.

In addition to the algorithmic framework, we developed a real-
time, interactive Streamlit application that allows users to
visualize trajectories, place obstacles, and fine-tune
optimization parameters on the fly. This practical tool not only
demonstrates GRAFT’s effectiveness in generating safe and
smooth motion plans but also highlights its potential for
scalable deployment in autonomous navigation tasks requiring
adaptability and safety.
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II. OBJECTIVES AND SCOPE
A. AIM

The aim of this project i1s to develop a safe and
adaptable trajectory planning system that addresses the
limitations of traditional MPC-based methods. It
leverages self-supervised learning to eliminate the need
for labeled data and enhances planning by learning a
latent representation of sate motion. The system
integrates this learned representation into the MPC
optimizer through a custom loss function that accounts
for obstacle avoidance and dynamic feasibility. GRAFT
1s designed to be scalable, modular, and user-friendly,
with an interactive interface for real-time visualization
and control, making 1t suitable for deployment In
practical autonomous navigation tasks.

B. Future Development

This project focuses on the design and implementation
of a self-supervised learning-based optimizer for safe
trajectory planning using Model Predictive Control
(MPC). The system’s core components include an
autoencoder that learns a latent representation of safe
trajectories and an MPC optimizer that incorporates this
representation through a custom loss function.
Currently supporting real-time planning in simulated
environments with both dynamic and static obstacles,
the solution features a Streamlit-based interface for
interactive visualization and parameter tuning.

While presently a prototype, the system 1s designed
with scalability and adaptability in mind, positioning it
for future deployment 1n real-world autonomous
navigation applications. Potential extensions include
integration  with  physical  robotic  platforms,
enhancement of the learning model with richer datasets,
and expansion to more complex environments such as
urban driving or aerial drone navigation.

[II. LITERATURE REVIEW

1.Optimal Model Predictive Control for Path
Tracking of Autonomous Vehicles [1]

Aim: Develop an MPC that optimizes path tracking
accuracy and energy use while reducing
computational cost.
Scope: Path tracking control for autonomous vehicles
using a dynamically wupdated linear model.
Results: Achieves better computational efficiency
and comparable or 1mproved tracking versus
nonlinear MPC methods.
Future Enhancements: Extend to more complex
dynamics and 1mprove real-time performance on
embedded platforms.

2.Robust Trajectory Planning Based on Historical
Information for Autonomous Vehicles[2]

Aim: To develop a robust trajectory planner that
adapts to dynamic environments by leveraging
historical motion data.
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Scope: Combines candidate generation, collision/stability
detection, and speed planning for real-time autonomous
driving.

Results: Demonstrated improved trajectory smoothness and
stability in  both  simulation and field tests.
Future Enhancements: Can be expanded with machine
learning modules for predictive stability assessment and
adaptive speed tuning.

3 An Online Time-Optimal Trajectory Planning Method for
Constrained Multi-Axis  Trajectory With Guaranteed
Feasibility[3]

Aim: To propose a time-optimal trajectory planning method
for continuous multi-axis paths suitable for real-time
applications.

Scope: Targets online trajectory planning under high-order
kinematic constraints for robotics, CNC machines, and
autonomous vehicles.
Results: Achieves near-optimal performance compared to
offline methods while maintaining real-time computational
efficiency.

Future Enhancements: Can be extended to more complex
dynamic environments and integrated with adaptive control
systems.

4. An Improved Model-Free Predictive Control Method for
Nonlinear Time-Delay Systems[4]

Aim: Enhance model-free adaptive control by incorporating
output error and predictive control.

Scope: Control of nonlinear and large time-delay systems
without explicit models.

Result: Achieved stable output, better control, and faster
response in simulations.

Future Enhancement: Real-time 1mplementation and
application to multi-variable systems.

5.Development of a Human-Like Model Predictive Path
Tracking Control Algorithm for Autonomous Vehicles with
Self-Tuning of Control Period[5]

Aim: To design an MPC algorithm with self-tuning control
period that mimics human driving behavior for improved
path tracking.
Scope: Autonomous vehicle path tracking focusing on
lateral preview and yaw angle errors using a bicycle model-
based error dynamics.
Results: Demonstrated effective replication of human
control characteristics during curved path tracking in
simulation.

Future Enhancements: Extend testing to real-world driving
scenarios and adapt the control algorithm to varying road
and vehicle conditions.

[V SYSTEM ARCHITECTURE

The architecture of DRAFT is designed to integrate
traditional Model Predictive Control (MPC) with self-
supervised learning techniques to enable safe, smooth, and
optimized trajectory planning in dynamic environments. It 1s
implemented using PyTorch, Streamlit, NumPy, and
Matplotlib, offering a fully interactive Al-enhanced
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planning environment.
A. Core Architectural Layers:

1. Presentation Layer (Streamlit Interface):

The presentation layer 1s developed using Streamlit,
providing a clean and intuitive graphical user
interface (GUI) for interacting with the optimization
system. Users can input key parameters such as the
start and goal positions, number of waypoints,
obstacle layout, learning rate, and number of epochs.
The GUI dynamically visualizes the optimized
trajectory and overlays obstacle fields for clear
feedback. Additionally, it displays a real-time loss
curve, which illustrates how the current trajectory
improves over time during optimization. This
interface ensures accessibility even to users with
minimal technical expertise.

2. Application Layer (Trajectory Optimization
Engine):

The application layer in GRAFT 1s responsible for
trajectory optimization using a self-supervised
learning approach integrated with Model Predictive
Control principles. It mitializes a noisy linear
trajectory between the start and goal positions and
iteratively refines 1t by minimizing a custom loss
function. This loss function combines several
components: a goal-reaching term to ensure the
trajectory ends at the target, a smoothness term to
promote feasible motion, an obstacle avoidance
penalty for safety, and a reconstruction loss derived
from a trained autoencoder that captures safe motion
patterns. Optimization 1s performed using gradient
descent with the Adam optimizer over a predefined
number of iterations. Throughout this process, the
system provides real-time visualization of the
evolving trajectory and live updates on loss values.
Notably, GRAFT is implemented as a monolithic
Python/Streamlit application, forgoing a separate
backend or API calls, which simplifies integration
and user interaction within a single interface.

3. Data Layer (Trajectory Data and Model Files):

In GRAFT, the data layer consists of an MPC-
generated safe trajectory dataset stored in spreadsheet
format (e.g., .x1sx) and a trained autoencoder model
saved as a .pth file. The dataset 1s used for training,
while the model file 1s used for inference. Though no
database like MongoDB 1is used, structured file
handling ensures data consistency and supports
scalable updates for retraining or deployment.

4. Model Layer (Self-Supervised Learning Core):

The autoencoder 1s trained in a self-supervised
manner, learning a latent embedding of safe
trajectories. It reconstructs input trajectories, and the
reconstruction error 1s used during optimization to
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ensure that new trajectories resemble those learned from
data.

This promotes generalization to novel inputs and adds a
learned safety prior into the trajectory planning process.

B. Trajectory Optimization and Safety Assurance
Framework

Safety and optimality are fundamental principles of the
proposed GRAFT. The system integrates model predictive
control with deep learning—-based representation learning to
generate safe, efficient, and dynamically feasible trajectories.

The planning process

i1s governed by the following

mathematical formulations:

Model Predictive Control (MPC): At each iteration, the
trajectory 1s computed by minimizing a total cost function
L _total over a horizon of N waypoints:

Ltotal =Lgoal +Al Lsmooth +A2 Lobstacle +A3

Lreconstruction

Goal Loss (L_goal): Encourages the final waypoint x N
to coincide with the desired goal location:

Lgoal =|x N -x goal |?

Smoothness Loss (L_smooth): Promotes continuity and
smooth transitions between consecutive waypoints by
penalizing second-order differences:

Lsmooth=3 {i=1}{N-1} [|x {i+1}-2x i+x {i-
1} )7

Obstacle Penalty (L_obstacle): Ensures that trajectories
avold known obstacles O = { (o_J, r_J) }, where o_j and
r_] represent the position and radius of the j-th obstacle:

Lobstacle=% {i=1}"N X _{j=1}"M max(0, r j - |
X _1-0_]||)?

Latent Trajectory Representation via Autoencoder: A
deep autoencoder, pre-trained on a dataset of safe
trajectories, 1s used to encode trajectories into a compact
latent representation:

Lreconstruction =||x1:N —x"1:N ||2

This structure allows the system to learn and reuse
feasible motion patterns, improving generalization and
planning efficiency.

Gradient-Based Optimization:

The total cost 1s minimized using gradient descent
techniques:

X_1:N(t+1)=x_1:N(t) -n * V_x Ltotal

C. Interaction Flow and Communication

The SOMTP system operates as a tightly integrated pipeline
within a unified runtime environment, where all modules
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communicate through direct n-memory data
exchange. The user inputs start and goal positions
along with obstacle data via the interface, which is
directly fed into the trajectory optimization engine.
This engine nitializes a trajectory and iteratively
refines 1t by mmimizing a custom loss function that
integrates Model Predictive Control principles with
self-supervised learning from a trained autoencoder.
The autoencoder guides the optimizer by ensuring
trajectories conform to learned safe motion patterns.
All computations and visualizations happen in real
time within the same application, enabling low-
latency communication and efficient execution
without relying on external APIs or separate backend
services.
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Figure 1: Activity diagram depicting the interaction flow of
system

V PROPOSED METHODOLOGY

The proposed system integrates Model Predictive
Control (MPC) with a self-supervised autoencoder
directly within the trajectory optimization loop to
address safe trajectory planning in dynamic and
constrained environments. The process starts with
the user specifying the start and goal positions along
with obstacle data, forming the basis for a simulated
planning scenario. A noisy 1nitial trajectory 1s
created and 1teratively optimized using gradient
descent to minimize a composite loss function.

This loss function includes terms for reaching the
goal, trajectory smoothness, obstacle avoidance, and
a reconstruction loss computed using a trained
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autoencoder. The autoencoder, having learned the latent
features of safe trajectories from a dedicated dataset, guides
the optimizer toward trajectories that conform to safety
characteristics without needing explicit labels.

By integrating safety constraints into the optimization
process i1tself, the system achieves both real-time
performance and safety assurance. This hybrid, self-
supervised approach 1s suitable for autonomous systems
where robust, adaptable, and safe motion planning 1s
critical.

A. System Input and Scenario Configuration

The system begins by accepting key user-defined
parameters, including start and goal coordinates, obstacle
locations, learning rate, and the number of optimization
iterations. These 1nputs define the trajectory planning
scenario and influence both the optimizer’s convergence
behavior and the quality of the resulting path. The learning
rate controls how aggressively the optimizer updates the
trajectory, while the iteration count determines how many
refinement steps are performed. This setup enables users to
customize and experiment across various planning
environments. The provided data initializes the simulation
environment, forming the foundation for safe trajectory
generation under complex constraints.

Input Parameters

§ Start X 0
1.90
ﬁ
9.00 10.00
- StartY @
1.00
—
9.00 10.00
® Goal X ®
3.360
ﬁ
0.00 10.008
® GoalY ©
7.10
—
0.00 10.008

Figure 2 : Illustrates the start and goal positions
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Y 1 ©,
2.880

ﬁ

0.00 10.00

Radius 1 ®
1.00

—_—

9.10 5.00

® Obstacle 2

Figure 3: Shows Number of obstacles along with its radius
and placement

B. Trajectory Generation using MPC and Auto-
encoder

The system employs Model Predictive Control (MPC)
to generate optimized trajectories that satisty
constraints such as obstacle avoidance and smooth
motion. To intrinsically ensure safety during
trajectory generation, a self-supervised autoencoder is
incorporated within the framework. This autoencoder
1s trained on safe trajectory data and operates
alongside the MPC to implicitly guide trajectory
optimization. By continuously reconstructing the
candidate trajectories and monitoring reconstruction
errors, the system detects deviations from safe
trajectory patterns in real time. Trajectories that
significantly deviate from learned safe dynamics—
indicated by high reconstruction error—are avoided
or re-optimized, enabling the system to maintain
safety without relying on explicit external validation
or labeling.

C. Result Visualization and Feedback

After validation, the best possible trajectory is
visualized for the user. The interface displays
trajectory lines, obstacles, and safety status. Users
are informed whether the path was deemed safe or
needs adjustment based on the visualization. This
real-time feedback allows users to reconfigure
inputs  or analyze outcomes, promoting
transparency and iterative optimization

D. Integrated System Workflow:

ensures seamless communication, low-latency processing,
and modular code integration. Unlike API-driven systems,
this setup enhances execution speed and reduces
complexity.

VI IMPLEMENTATION AND RESULTS

The 1mplementation leverages Streamlit to create an
interactive interface allowing users to input key parameters
for safe trajectory planning including start and goal
coordinates, obstacle configuration, learning rate, and
number of tramning iterations. Internally, the application is
developed 1n Python, integrating a Model Predictive
Control (MPC) module with a self-supervised autoencoder
trained using PyTorch. The system processes inputs in real
time and computes trajectories using MPC under dynamic
constraints. The autoencoder 1s embedded within the
optimization process, providing a reconstruction loss that
acts as a learned safety prior, guiding the optimizer to
generate trajectories consistent with previously observed
safe behaviors. Data exchange between components occurs
IN-memory to maintain responsiveness.

The system was tested on a dataset of trajectories to
evaluate how effectively the autoencoder-informed
optimization shapes trajectory generation. Visualizations
via Streamlit enable users to observe the evolving
trajectory and its reconstruction, facilitating insight into
how the optimization process balances goal achievement,
smoothness, obstacle avoidance, and adherence to learned
safe trajectory patterns. The system demonstrated real-time
performance and effective trajectory planning across varied
obstacle configurations.

Deploy

—e— Trajectory

@ Start
. Goal

0 2 4 6 8
X

Figure 4: Showing Trajectory based on user input

All  components of the system—irom 1nput
collection to final visualization—are orchestrated
within a single runtime environment using direct
function calls and in-memory data sharing. This
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VI TESTING RESULTS Test Case-3: Multiple Object
Test Case-1: Single Object, Small Radius Input Values:
start position: (1,1)

Input Values: goal position: (9,9)
start position: (1,1) Obstacles: obstacle at (2.9 3.2), radius 1.0
Goal position: (8,8.5) . obstacle at (6, 5), radius 1.0
obstacle at (3.7, 3.7), radius 1.0 obstacle at (3.9, 5.1), radius 1.0

Optimized Trajectory obstacle at (7.8,7.6), radius 0.7
-é- L:: tory (o} Optimized Trajectory

g4 Goal -& Trajectory
L;n c .
81 @ Goal

1 F 3 4 3 6 7 B

X 1 ':.|
Figure 5:the agent successfully generates a safe and 1 2 3 4 s 6 ? +
. i % X
S O;}Ih gaj ectory around a single obstacle with a Figure 7: the agent successfully plans a collision-free
STHALE Fadius. trajectory, avoiding all three obstacles while reaching the
Test Case-2: Single-Object, Big Radius goal
Input Values:
start position: (1,1) Test Case-4: Multiple Object with different size
Goal position: (9,9)
: Input Values:
Obstacle at (3.8,4.1), radius 2.8 start position: (1,1)
Optimized Trajectory goal position: (9,9) _
e Obstacles: obstacle at (1,2), radius 1.0
z Start 4 obstacle at (3, 5), radius 2.6
84 Goal

obstacle at (5,8), radius 1.6
obstacle at (7.5, 5.6), radius 1.5
74 obstacle at (9, 8.6), radius 1.4

Optimized Trajectory

- Trapectory

Start
Goal

1014

1 2 _1 4 S b ! 4
Figure 6: the agent generates a safe trajectory around a
single obstacle with a large radius
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IV. CONCLUSION AND FUTURE SCOPE

This project introduced a novel framework that
integrates Model Predictive Control (MPC) with a
self-supervised autoencoder to improve safety in
trajectory planning problems. By combining MPC’s
strength 1n generating optimal, constraint-aware
trajectories with the autoencoder’s ability to learn
meaningful state representations without
supervision, the proposed system enables reliable
motion planning even under complex spatial
constraints. A lightweight GUI built using Streamlit
supports interactive experimentation, allowing users
to fine-tune hyperparameters such as the learning
rate and number of training iterations.

The core strength of this system lies in its modular
design and clean separation of planning and learning
components. This makes it highly adaptable for
further research in safe trajectory planning under
uncertainty, nonlinear dynamics, or more complex
task objectives. Researchers can easily replace or
enhance individual modules—such as swapping 1n a
different encoder architecture or using alternative
control cost functions—without overhauling the
entire pipeline.

Looking forward, the system has strong potential for
deployment in semi-autonomous robotic systems
operating in structured indoor environments,
including factories, warehouses, laboratories, and
research facilities. These settings benefit greatly
from real-time trajectory optimization combined
with safety-aware decision-making. The SOMTP
planner, guided by MPC, ensures adherence to
spatial constraints, while the self-supervised
autoencoder introduces a data-driven safety filter,
capable of flagging out-of-distribution or risky
trajectories.

With additional integration into standard robotics
middleware such as ROS (Robot Operating
System) and the inclusion of real-time sensor
feedback (e.g., LiDAR, cameras, or depth sensors),
this system could be deployed in dynamic,
obstacle-rich environments. Applications include
material transport, autonomous 1nspection, and
collaborative robotic systems where safety and
adaptability are critical. Furthermore, adapting the
current system to handle moving obstacles or to
learn from on-the-fly data could make it suitable for
more general autonomous navigation tasks.

Overall, this project lays the groundwork for a
practical and extensible safe trajectory planner that
bridges the gap between traditional control theory
and modern self-supervised learning, with clear
applicability in industrial automation, research
robotics, and future intelligent systems.
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